Publicação

Rising of a single Taylor drop in a stagnant liquid-2D laminar flow and axisymmetry limits

Detalhes bibliográficos
Resumo:A numerical (computational fluid dynamics (CFD)) study concerning the rise of individual liquid Taylor drops through vertical columns of stagnant heavier liquids is presented in this paper. CFD simulations were performed in Ansys Fluent, using its implementation of volume of fluid method, assuming the flow to be axisymmetric and laminar. Different physical conditions were tested, corresponding to different combinations of relevant dimensionless parameters and the numerical method was validated through experimental data available in the literature. The viscosity ratio between the lighter and the heavier liquid was within the range 0.01-40 and Eotvos number was between 8 and 30. Morton number was within the interval of 2.32 x 10(-6)-100. Froude number results were compared to data from a literature correlation. The accordance is acceptable for the ranges studied. Velocity profiles in significant regions are reported (drop nose, drop bottom and continuous phase liquid film). The influence of changing one dimensionless parameter alone was assessed. For small and large viscosity ratios, axisymmetric behavior is not a valid assumption.
País:Portugal
Tipo de documento:journal article
Tipo de acesso:Restrito
Instituição associada:Repositório Aberto da Universidade do Porto
Idioma:inglês
Origem:Repositório Aberto da Universidade do Porto
Descrição
Resumo:A numerical (computational fluid dynamics (CFD)) study concerning the rise of individual liquid Taylor drops through vertical columns of stagnant heavier liquids is presented in this paper. CFD simulations were performed in Ansys Fluent, using its implementation of volume of fluid method, assuming the flow to be axisymmetric and laminar. Different physical conditions were tested, corresponding to different combinations of relevant dimensionless parameters and the numerical method was validated through experimental data available in the literature. The viscosity ratio between the lighter and the heavier liquid was within the range 0.01-40 and Eotvos number was between 8 and 30. Morton number was within the interval of 2.32 x 10(-6)-100. Froude number results were compared to data from a literature correlation. The accordance is acceptable for the ranges studied. Velocity profiles in significant regions are reported (drop nose, drop bottom and continuous phase liquid film). The influence of changing one dimensionless parameter alone was assessed. For small and large viscosity ratios, axisymmetric behavior is not a valid assumption.